Large Scale Concept Detection in Video Using a Region Thesaurus
نویسندگان
چکیده
This paper presents an approach on high-level feature detection within video documents, using a Region Thesaurus. A video shot is represented by a single keyframe and MPEG-7 features are extracted locally, from coarse segmented regions. Then a clustering algorithm is applied on those extracted regions and a region thesaurus is constructed to facilitate the description of each keyframe at a higher level than the low-level descriptors but at a lower than the high-level concepts. A model vector representation is formed and several high-level concept detectors are appropriately trained using a global keyframe annotation. The proposed approach is thoroughly evaluated on the TRECVID 2007 development data for the detection of nine high level concepts, demonstrating sufficient performance on large data sets.
منابع مشابه
Video Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کاملUsing Local Region Semantics for Concept Detection in Video
This paper presents a framework for the detection of semantic features in video sequences. Low-level feature extraction is performed on the keyframes of the shots and a “feature vector” including color and texture features is formed. A region “thesaurus” that contains all the high-level features is constructed using a subtractive clustering method.Then, a “model vector” that contains the distan...
متن کاملHigh-Level Concept Detection in Video Using a Region Thesaurus
This work presents an approach on high-level semantic feature detection in video sequences. Keyframes are selected to represent the visual content of the shots. Then, low-level feature extraction is performed on the keyframes and a feature vector including color and texture features is formed. A region thesaurus that contains all the high-level features is constructed using a subtractive cluste...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملA Region Thesaurus Approach for High-Level Concept Detection in the Natural Disaster Domain
This paper presents an approach on high-level feature detection using a region thesaurus. MPEG-7 features are locally extracted from segmented regions and for a large set of images. A hierarchical clustering approach is applied and a relatively small number of region types is selected. This set of region types defines the region thesaurus. Using this thesaurus, low-level features are mapped to ...
متن کامل